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Abstract. We derive and analyse inequalities relating masses of the lightest ππ resonances (ρ and σ) to
coupling constants of the effective chiral Lagrangian in the limit of a large number of colours.

PACS. 11.15.Pg Expansions for large numbers of components (e.g., 1/Nc expansions) – 14.40.-n Mesons

1. – The issue of the existence of the light scalar res-
onance (we call it σ in what follows) is one of the most
controversial questions in the meson spectroscopy (for a
review of the scalar meson spectroscopy see the note on
scalar mesons by S. Spanier and N. Tornqvist in Review
of Particle Physics [1]1). Recently, this topic attracted a
considerable interest, see refs. [3–40].

In these notes we analyse the sum rules relating low-
energy constants (LECs) of the effective chiral Lagrangian
(EChL) to the resonance spectrum parameters in the limit
of a large number of colours [41,42]2.

We shall show that from these sum rules one can derive
a set of inequalities, e.g., such as:

M2
σ(3L2 + L3) + M2

ρ L2 ≤ F 2
π

4
, (1)

where Li are the coupling constants of the fourth-order
EChL [45], Mρ is the mass of the lightest isovector reso-
nance (ρ-meson), Mσ is the mass of the lightest isoscalar
resonance (σ-meson), and Fπ ≈ 93 MeV is the pion decay
constant. This inequality, apart from applications for esti-
mates of the σ-meson mass from above, demonstrates that
properties of the resonance spectrum are in close relations
with properties of chiral symmetry breaking. Additionally
inequalities of the type (1), due to their large-Nc nature,
can give us a possibility to study systematically the con-
troversial nature of the σ-meson. Below we give derivation
of the inequality (1) as well as its enhancements.
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1 Related problems are also discussed in the review article [2].
2 In [43] it is shown that those sum rules can be derived from

the general postulates of the effective theory without referring
to large-Nc limit; see also [44].

2. – Following the ideas of refs. [41,42] one can easily
derive the following set of large-Nc sum rules, relating
the constants of the effective chiral Lagrangian Li

3 to the
parameters of the resonance spectrum
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π]2
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4
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π]3
. (2)

Here MI are the masses of pion-pion resonances with
isospin I, and VI the corresponding residues. The latter
are related to the ππ resonance width Γ (R → ππ) via

V0 =
2
3
16π(2J + 1)

M2
0√

M2
0 − 4m2

π

Γ (R → ππ) , (3)

V1 = 16π(2J + 1)
M2

1√
M2

1 − 4m2
π

Γ (R → ππ) , (4)

where J is the resonance spin. The constant F0 ≈ 88 MeV
is the pion decay constant in the chiral limit. The con-
stants α, β are related to low-energy coefficients (LECs)
of the sixth-order EChL. We use estimates for the LECs
of the sixth-order EChL obtained in refs. [46,47] from the
chiral expansion of the dual (string) models

αm2
π ≈ 0.18 · 10−3, βm2

π ≈ 0.05 · 10−3 . (5)

In refs. [41,42] the sum rules (2) have been derived in
the chiral limit (mπ = 0). Here for completeness we give

3 Note that LECs Li are scale independent in the large-Nc

limit.
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short derivation of the first sum rule in eqs. (2). Writing
down the dispersion relation for ππ amplitude at fixed t
one can easily show that the low-energy constants satisfy
the following dispersion sum rules:

1
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+
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π

F 4
0
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π) + O

(
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c
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=
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+
1
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}

, (6)

where ρ(I) = 32π
∑∞

l=0(2l + 1)Im tIl (s + i0) and

tIl (s + i0) =
√

s

s − 4m2
π

1
2i

[e2iδI
l (s) − 1] (7)

is a partial-wave ππ amplitude with isospin I in s-channel,
δI
l (s) is the corresponding phase shift. In deriving disper-

sive sum rules, eq. (6), we used Regge asympotic condi-
tions imposed on the ππ scattering amplitudes with fixed
isospin in the t-channel

T 0
t (s, t) ∼ sα0(t) , α0(0) ≈ 1 ,

T 1
t (s, t) ∼ sα1(t) , α1(0) ≈ 1

2
,

T 2
t (s, t) ∼ sα2(t) , α2(0) < 0 ,

and Bose-symmetry requirements.
The spectral densities ρ(I) in the large-Nc limit have

the form

ρ(0) = 3π
∑

I=0 res.
V0δ(s − M2

0 ) , (8)

ρ(1) = 2π
∑

I=1 res.
V1δ(s − M2

1 ) , (9)

ρ(2) = 0 (absence of isospin-two resonances!) . (10)

Substituting these large-Nc spectral densities into disper-
sive sum rule (6) and choosing the parameter λ = 2, we
obtain the first sum rule of eqs. (2)

3. – From the sum rules, eqs. (2), one can immediately
obtain the following obvious inequalities:

3L3 + L2 + αm2
π > 0 ,

L2 + βm2
π >

VρF
4
0

4(M2
ρ − 2m2

π)3
≈ 1.66 · 10−3 , (11)

where Mρ and Vρ stand for the mass and residue of the
lightest isovector ππ resonance (ρ-meson). Further, noting
that

∑
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,

(12)

where k ≥ 2 and Mσ is a mass of the lightest isoscalar
(scalar) resonance, we obtain the following inequality:

M2
σ

(
3L3 + L2 + αm2

π

)
+ M2

ρ

(
L2 + βm2

π

)
<

F 2
0

4
+ 2m2

π (4L2 + L3) . (13)

This inequality provides us with a nice example of non-
trivial relations between the parameters of the resonance
spectrum and low-energy constants of EChL. The model-
independent large-Nc inequality (13) can be used for the
estimates of the σ-meson mass from above (see below), as
well as for consistency checks of various models of low-
energy QCD in the large-Nc limit.

Parameters of the EChL in the large-Nc limit have
been calculated in various models of the low-energy
QCD [48–53]. We shall use parameters from the analysis
of the EChL coupling constants in the large-Nc limit done
in [53] (the error bars take into account different values of
the constants obtained in the fits performed in [53]):

L2 = (1.6 ± 0.1) · 10−3 ,

L3 = −(4 ± 1) · 10−3 , (14)

These values are close to those obtained from the phe-
nomenological analysis [45,54], which shows that the 1/Nc

corrections to low-energy coefficients Li are rather small.
Due to the inequality, eq. (11), the value of L2 can-

not be below 1.63 · 10−3, therefore we shall use this mini-
mal value of L2 = 1.63 · 10−3 lying in the range given by
eq. (14)4. The error of calculation of L3 is bigger. Also,
the errors of L2 and L3 are strongly correlated. In or-
der to make an estimation of the Mσ based on inequal-
ity, eqs. (13), we use first the relation 2L2 + L3 = 0
which follows from integration of the non-topological chi-
ral anomaly [48–50] and from the low-energy limit of the
dual-resonance (string) models [46]. Using the above val-
ues of L2 and L3, we obtain from eqs. (13)

Mσ < 770 MeV, if 2L2 + L3 = 0 . (15)

This is the upper bound for the lightest isoscalar reso-
nance, if one assumes the relation 2L2 + L3 = 0. To con-
sider the more general case, we derive the upper limit on
Mσ as a function of the parameter ∆ defined as follows:

∆ = −2L2 + L3

L2
. (16)

The value of this parameter is zero for EChL obtained
by integration of non-topological chiral anomaly [48–51]
as well as for EChL obtained by chiral expansion of the
dual-resonance (string) models [46]. In the large-Nc–based
model of ref. [52] the value of ∆ is fixed in terms of gluon
condensate and constituent quark mass mQ ≈ 0.35 GeV

as ∆ = π2〈αs
π G2〉

5Ncm4
Q

≈ 0.3 . The value of LECs obtained in

ref. [55] corresponds to ∆ = 5/8 = 0.625. In any case
4 Note that for larger values of L2 the bounds on Mσ dis-

cussed below are stronger.
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the value of ∆ cannot exceed unity due to the inequality
(11). Experimentally, the parameter ∆ is constrained by
the ratio of the D-wave pion scattering lengths

∆ = −3
a2
2

a0
2

+ O(m2
π) ≈ −0.2 ± 0.6 , (17)

where we took the experimental values of the D-wave scat-
tering lengths from ref. [56].

Now it is easy to derive from the inequality (13) the
upper bound for the σ-meson mass as a function of the
parameter ∆. This function at small values of ∆ takes the
form

Mσ < 770
[
1 + 0.42∆ + 0.29∆2 + O(∆3)

]
MeV . (18)

We see that the upper bound for the σ-meson mass is
sensitive to the sign of the parameter ∆ (see definition
(16)). Therefore the values of LECs of the fourth-order
EChL can give us a valuable information about the light-
est scalar meson in the spectrum of QCD.

4. – In the case when one possesses an additional infor-
mation (masses and widths of resonances) on the excited
meson spectrum (mesons heavier than σ in the isoscalar
channel and ρ in isovector one) the inequality (13) can be
enhanced. Let us call the excited resonances for which we
have the additional information about their masses and
widths as known. With this additional information the in-
equality (13) can be enhanced as follows:
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For the numerical estimates we take, as the known res-
onances, f2(1275) in the isoscalar channel and ρ3(1690)
in the isovector channel. We do not include other scalar
and vector mesons as their nature is not well established
and it is not clear whether their dynamics is “leading” in
the large-Nc limit. Taking the masses and ππ widths of
f2(1275) and ρ3(1690) from [1], we obtain the enhance-
ment of the inequality (18)

Mσ < 665
[
1 + 0.44∆ + 0.33∆2 + O(∆3)

]
MeV . (20)

Obviously the inclusion of other resonances, e.g.
f0(980), f0(1370), f0(1500), ρ′, f4, etc. would lead to lower
bound on the mass of σ-meson.

5. – To summarize, we derive the inequalities for the
masses of the lightest ππ resonances in the limit of a large
number of colours (Nc → ∞), see eqs. (13),(19). These in-
equalities put an upper bound on the mass of σ-meson in
terms of pion decay constant Fπ and the low-energy con-
stants of effective chiral Lagrangian L2 and L3. Analysis
of these inequlities favours the presence of the light (mass
< 750 MeV) scalar state in the meson spectrum of the
multicolour QCD.

As a final remark, we note that the sum rules (2) are
derived in the limit of a large number of colours, this im-
plies that the exotic mesons (glueballs, four-quark states)
do not contribute to the sum rules because their contribu-
tions are suppressed by powers of 1/Nc. This observation
shows that the sum rules (2) can be used for identification
of the nature of low-lying scalar mesons. For example, the
sum rules in eq. (2) tell us that the leading large-Nc part
of the width (read the width of the qq̄ and hybrid part)
and the mass of the σ-meson should satisfy the following
constraint:

32πF 2
0 M2

σΓ (σ→ππ)
3
√

M2
σ−4m2

π [M2
σ−2m2

π]2
≤1− 4

(
M2

ρ −2m2
π

)
F 2

0

L2 . (21)

Obviously, other sum rules in eq. (2) and an additional in-
formation about resonance spectrum would provide more
sophisticated constrains on the parameters of qq̄ compo-
nent of the σ-meson. We shall analyse them elsewhere.
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